Symmetric powers and modular invariants of elementary abelian p -groups
نویسندگان
چکیده
منابع مشابه
DECOMPOSING SYMMETRIC POWERS OF MODULAR REPRESENTATIONS OF ELEMENTARY ABELIAN p-GROUPS
Let G be a elementary abelian p-group of order q = p. Let V be a faithful indecomposable modular representation of G with dimension 2. We consider representations of the form S(S(V )). In particular we prove that S(S(V )) is projective whenever d+m ≥ q, and either d < p and m < q or m < p and d < q. More generally we show that if d+m ≥ q and d < q, m < q, then each summand of S(S(V )) is induce...
متن کاملRINGS OF INVARIANTS FOR MODULAR REPRESENTATIONS OF ELEMENTARY ABELIAN p-GROUPS
∗ We initiate a study of the rings of invariants of modular representations of elementary abelian p-groups. With a few notable exceptions, the modular representation theory of an elementary abelian p-group is wild. However, for a given dimension, it is possible to parameterise the representations. We describe parameterisations for modular representations of dimension two and of dimension three....
متن کاملModules for Elementary Abelian p-groups
Let E ∼= (Z/p)r (r ≥ 2) be an elementary abelian p-group and let k be an algebraically closed field of characteristic p. A finite dimensional kE-module M is said to have constant Jordan type if the restriction of M to every cyclic shifted subgroup of kE has the same Jordan canonical form. I shall begin by discussing theorems and conjectures which restrict the possible Jordan canonical form. The...
متن کاملComputing Modular Invariants of p-groups
Let V be a finite dimensional representation of a p-group, G, over a field, k, of characteristic p. We show that there exists a choice of basis and monomial order for which the ring of invariants, k[V ]G, has a finite SAGBI basis. We describe two algorithms for constructing a generating set for k[V ]G. We use these methods to analyse k[2V3]3 where U3 is the p-Sylow subgroup of GL3(Fp) and 2V3 i...
متن کاملDecomposing Symmetric Powers of Certain Modular Representations of Cyclic Groups
For a prime number p, we construct a generating set for the ring of invariants for the p+1 dimensional indecomposable modular representation of a cyclic group of order p. We then use the constructed invariants to describe the decomposition of the symmetric algebra as a module over the group ring, confirming the Periodicity Conjecture of Ian Hughes and Gregor Kemper for this case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2017
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2017.07.020